

Mechatronics Electromagnetic Waves (MTE100) (2016-2017) Summer Course

Sheet 3

- $\boxed{1}$ A 2 mC positive charge is located in vacuum at $P_1(3,-2,-4)$ and a $5\mu C$ negative charge is at $P_2(1,-4,2)$:
 - a) Find the vector force on the negative charge.
 - b) What is the magnitude of the force on the charge at P_1 ?
- [2] Find the force on a 100μ C charge at (0,0,3)m if four like charges of 20μ C are located on the x and y axes at $\pm 4m$.
- $\boxed{3}$ Two point charges, Q₁=50μc and Q₂=10μc are located at(-1,1, -3)m and (3,1,0)m, respectively. Find the force on Q₁.
- 4 Point charge Q₁=300μc, located at (1, -1, -3) m_, exerts a force F1= $8a_x 8a_y + 4a_z$ N due to point charge Q₂ located at (3, -3, -2)m. Determine Q₂.
- 5 Find the electric field intensity at point(2,1,3) due to two charges of Q_1 =5 μ C and Q_2 =8 μ C, at points(3,1,2) and origin.
- An electron beam may be approximated by a right circular cylindrical of random R that contains a volume charge density $\rho_v = \frac{\kappa}{C + r^2} c/m^3$ where K and C are constants, Evaluate the total charge per unit length of beam.
- $\boxed{7}$ A plane y=3m contains a uniform charge distribution of a density $\rho_s=\left(\frac{10^{-8}}{6\pi}\right)$ C/m² Determine \overline{E} at all points
- B Determine \bar{E} at (x,-1,0) m due to a uniform sheet charge with $\rho_s = \left(\frac{1}{3\pi}\right) \text{nC/m}^2$ is located at z=5 m and a uniform line charge with $\rho_l = \left(\frac{-25}{9}\right) \text{nC/m}$ at z=3,y=3 m.